Epitope Identification and Affinity Determination of an Inhibiting Human Antibody to Interleukin IL8 (CXCL8) by SPR- Biosensor–Mass Spectrometry Combination

Epitope Identification and Affinity Determination of an Inhibiting Human Antibody to Interleukin IL8 (CXCL8) by SPR- Biosensor–Mass Spectrometry Combination

Abstract

The polypeptide chemokine Interleukin-8 (IL8) plays a crucial role in inflammatory processes in humans. IL8 is involved in chronic inflammatory lung diseases, rheumatoid arthritis, and cancer. Previous studies have shown that the interaction of IL8 with its natural receptors CXCR1 and CXCR2 is critical in these diseases. Antibodies have been used to study the receptor interaction of IL8; however, the binding epitopes were hitherto unknown. Identification of the antibody epitope(s) could lead to a molecular understanding of the inhibiting mechanism and development of improved inhibitors. Here, we report the epitope identification and the affinity characterization of IL8 to a monoclonal anti-human IL8 antibody inhibiting the receptor binding by a combination of surface plasmon resonance (SPR) biosensor analysis and MALDI-mass spectrometry. SPR determination of IL8 with the immobilized antibody revealed high affinity (KD, 82.2 nM). Epitope identification of IL-8 was obtained by proteolytic epitope-extraction mass spectrometry of the peptide fragments upon high pressure trypsin digestion, using an affinity microcolumn with immobilized anti-IL-8 antibody. MALDI-MS of the affinity-bound peptide elution fraction revealed an assembled (discontinuous) epitope comprising two specific peptides, IL8 [12–20] and IL8 [55–60]. Identical epitope peptides were identified by direct MALDI-MS of the eluted epitope fraction from the immobilized anti-IL8 antibody on the SPR chip. SPR determination of the synthetic epitope peptides provided high affinities confirming their binding specificity. The previously reported finding that the anti-Il8 antibody is inhibiting the IL8–CXCR1 interaction is well consistent with the overlapping region of epitope interactions identified in the present study.